Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian-Rong Han* and Xiao-Li Zhen

College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China

Correspondence e-mail:
han_jianrong@163.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.043$
$w R$ factor $=0.130$
Data-to-parameter ratio $=15.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-[2-(3-Formylphenoxy)ethoxy]benzaldehyde

The molecule of the title compound, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}$, is nearly planar. A crystallographic centre of symmetry is located at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond. The two aromatic rings are parallel to each other. The crystal structure is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Since their initial synthesis by Pedersen (1967), crown ethers have been shown to be of great importance in supramolecular chemistry as they can form supramolecular structures which can be used as models for studying weak interactions. Consequently, these species have been used to study the molecular recognition of special guest molecules (Habata et al., 1996). As part of our interest in the molecular and ionic recognition properties of crown ethers, we have now investigated the title compound, (I), used as a precursor in the preparation of crown ethers.

(I)

Fig. 1 shows the molecular structure of (I), with the atomic numbering scheme. In (I), a crystallographic centre of symmetry is located at the mid-point of the central $\mathrm{C} 8-\mathrm{C}^{\mathrm{i}}$ bond [symmetry code: (i) $-x+1,-y+1,-z+2$]. The $3-$ hydroxybenzaldehyde residue $(\mathrm{C} 1-\mathrm{C} 7 / \mathrm{O} 2)$ is essentially planar, with an r.m.s. deviation for the fitted atoms of 0.0159 (19) A. The two aromatic rings in the molecule are exactly parallel to each other by symmetry. The $\mathrm{C} 8-\mathrm{O} 2-$ C1-C6 torsion angle of $-172.2(2)^{\circ}$ confirms the nearly

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) $-x+1,-y+1,-z+2$.]

Received 14 November 2005 Accepted 18 November 2005 Online 23 November 2005
planar conformation of the molecule. The geometry is similar to that in 4-[2-(4-formyl-2-methoxyphenoxy)ethoxy]-3methoxybenzaldehyde (Diao et al., 2005). All bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987).

The crystal structure is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 2), forming an infinite framework.

Experimental

1,2-Dibromoethane ($9.4 \mathrm{~g}, 50 \mathrm{mmol}$) was added dropwise over 0.5 h to a solution of 3-hydroxybenzaldehyde ($12.2 \mathrm{~g}, 100 \mathrm{mmol}$) and potassium carbonate ($13.8 \mathrm{~g}, 100 \mathrm{mmol}$) in acetonitrile (500 ml), and the mixture was refluxed for 24 h under nitrogen. The solvent was removed and the resultant mixture poured into ice-water (500 ml). The white precipitate which formed was then isolated and recrystallized from acetonitrile to give the pure compound (yield 6.1 g , 45%; m.p. 364 K). Colourless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \\
& M_{r}=270.27 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=5.6966(14) \AA \\
& b=16.098(4) \AA \\
& c=7.4113(18) \AA \\
& \beta=100.309(4)^{\circ} \\
& V=668.7(3) \AA^{3} \\
& Z=2
\end{aligned}
$$

$$
D_{x}=1.342 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1346 reflections
$\theta=3.1-24.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.36 \times 0.22 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.952, T_{\text {max }}=0.987$
3701 measured reflections
1366 independent reflections
899 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-7 \rightarrow 6$
$k=-13 \rightarrow 20$
$l=-8 \rightarrow 9$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0734 P)^{2}\right.$ $+0.0615 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.18 \mathrm{e}^{\AA^{-3}}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.130$
$S=1.00$
1366 reflections
91 parameters
H -atom parameters constrained

Figure 2
A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C6-H6 $\cdots \mathrm{O}^{\mathrm{iii}}$	0.93	2.57	$3.475(2)$	163
C5-H5 $^{\text {iii }}$	0.93	2.57	$3.306(2)$	136

Symmetry codes: (ii) $-x, y-\frac{1}{2},-z+\frac{3}{2}$; (iii) $x-1,-y+\frac{3}{2}, z-\frac{1}{2}$.
H atoms were positioned geometrically and they were constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93(\mathrm{CH})$ and $0.97 \AA\left(\mathrm{CH}_{2}\right)$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1999). SMART (Version 5.0) and SAINT (Version 4.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Diao, C.-H., Guo, M.-J., Yu, M., Chen, X., Jing, Z.-L. \& Deng, Q.-L. (2005). Acta Cryst. E61, o3741-o3742.
Habata, Y., Bradshaw, J. S., Young, J. J., Castle, S. L., Huszthy, P., Pyo, T., Lee, M. L. \& Izatt, R. (1996). J. Org. Chem. 61, 8391-8396.

Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

